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Exact finite-size corrections for the square-lattice Ising model with Brascamp-Kunz
boundary conditions
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Finite-size scaling, finite-size corrections, and boundary effects for critical systems have attracted much
attention in recent years. Here we derive exact finite-size corrections for the free energyF and the specific heat
C of the critical ferromagnetic Ising model on theM32N square lattice with Brascamp-Kunz~BK! boundary
conditions @J. Math. Phys.15, 66 ~1974!# and compare such results with those under toroidal boundary
conditions. When the ratioj/25(M11)/2N is smaller than 1 the behaviors of finite-size corrections forC are
quite different for BK and toroidal boundary conditions; when ln(j/2) is larger than 3, finite-size corrections for
C in two boundary conditions approach the same values. In the limitN→` we obtain the expansion of the free
energy for infinitely long strip with BK boundary conditions. Our results are consistent with the conformal field
theory prediction for the mixed boundary conditions by Cardy@Nucl. Phys.B 275, 200 ~1986!# although the
definitions of boundary conditions in two cases are different in one side of the long strip.
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I. INTRODUCTION

In the study of phase transitions and critical phenomen
is extremely important to understand finite-size correctio
to thermodynamical quantities. In experiments and in
merical studies of model systems, it is essential to take
account finite-size effects in order to extract correct infini
volume predictions from the data. Finite-size scaling@1–3#
concerns the critical behavior of systems in which one
more directions are finite, even though microscopically lar
it is valuable in the analysis of experimental and numeri
data in many situations, for example, for films of finite thic
ness. As soon as one has a finite system one must con
the question of boundary conditions on the outer surface
‘‘walls’’ of the system. The systems under various bounda
conditions have the same per-site free energy, internal
ergy, specific heat, etc., in the bulk limit, whereas the fini
size corrections are different. To understand the effects
boundary conditions on finite-size scaling and finite-size c
rections, it is valuable to study model systems, such as
colation model@4# and the Ising model@5–9#. Therefore, in
recent decades there have been many investigations
finite-size scaling, finite-size corrections, and boundary
fects for critical model systems@10–21#. Of particular im-
portance in such studies are exact results where the ana
can be carried out without numerical errors.

The Ising model has exact solutions on finite lattices w
many kinds of boundary conditions, including cylindric
@5#, toroidal @6–8#, and Mobius strip and Klein bottle@16#.
This class also includes the special boundary conditions
troduced by Brascamp and Kunz@9#. The calculation of the
exact partition function of the two-dimensional Ising mod
in the zero field wrapped on the cylinder was performed
Onsager in 1944@5#. Exploiting the exactly known partition
function of the two-dimensional Ising model on fini
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M3N square lattice with toroidal boundary conditions@6#,
Ferdinand and Fisher@7# computed the finite-size correction
to the free energy, the internal energy, and the specific h
up to orderN21. Recently, there has been much effort
understanding the behavior of finite-size corrections of
free energy, internal energy, and specific heat. Izmailian
Hu @15# and Salas@17# extended the results of@7# for the free
energy and the internal energy up to orderN25 and for the
specific heat up to orderN23. Lu and Wu @16# obtained
expressions for the partition function of the Ising model
an quadratic lattice embedded on a Mobius strip and a K
bottle. They find finite-size corrections for free energy
order N21. Brascamp and Kunz@9# calculated the partition
function of the Ising model on theM32N square lattice for
special boundary conditions shown in Fig. 1. Recently Ja
and Kenna@19# have calculated the finite-size corrections
the specific heat for this boundary condition up toM 23 or-
der. Very recently, Ivashkevich, Izmailian, and Hu@20# pro-
vided a systematic method to compute finite-size correcti
to the partition function and their derivatives of the Isin
model on torus. Their approach is based on an intimate r

FIG. 1. The Brascamp-Kunz boundary conditions for t
M32N lattice. HereM57 and 2N58.
©2002 The American Physical Society32-1
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tion between the terms of the asymptotic expansion and
so-called Kronecker’s double series@20#, which are directly
related to ellipticu functions. Expressing the final result i
terms ofu functions avoids messy sums~as in some earlier
works! and greatly simplifies the task of verifying the beha
ior of the different terms in the asymptotic expansion un
duality transformationM↔N. Using this approach, Sala
@21# computed the finite-size corrections to the free ene
internal energy, and specific heat of the critical Ising mo
on a triangular and honeycomb lattices wrapped on a to

Using the exact partition of Ref.@9# and the method of
Ref. @20#, in the present paper we derive exact finite-s
corrections for the free energyF and and the specific heatC
of the critical ferromagnetic Ising model on theM32N
square lattice with Brascamp-Kunz~BK! boundary condi-
tions @9# and compare such results with those under toro
boundary conditions@7,15#. We find that when the ratioj/2
5(M11)/2N is smaller than 1 the behaviors of finite-siz
corrections forC are quite different for BK and toroida
boundary conditions; when ln(j/2) is larger than 3, finite-size
corrections forC in two boundary conditions approach th
same values. In the limitN→` we obtain the expansion o
the free energy for infinitely long strip with BK boundar
conditions. Our results are consistent with the conform
field theory prediction for the mixed boundary conditions
Cardy@11# although the definitions of boundary conditions
two cases are different on one side of the long strip.

This paper is organized as follows. In Sec. II we sh
how to lead the partition function of Ising model under t
BK boundary conditions to the form of partition functio
with twisted boundary conditions. In Sec. III asymptotic e
pansion of the free energy is presented. In Sec. IV expan
of the specific heat is presented. Our results are summar
and discussed in Sec. V.

II. ISING MODEL UNDER BRASCAMP-KUNZ
BOUNDARY CONDITIONS

For the Ising model on a latticeG of N sites, thei-th site
of the lattice for 1< i<N is assigned a classical spin variab
si , which has values61. The spins interact according to th
Hamiltonian

bH52J(̂
i j &

sisj , ~1!

whereJ is the exchange energy, the sum runs over the n
est neighbor pairs of spins, andb51/kBT is the inverse tem-
perature. The partition function of the Ising model is giv
by the sum over all spin configurations on the lattice

ZIsing~J!5(
s

e2bH(s). ~2!

As is mentioned in the Introduction there are a few bound
conditions for which the Ising model has been solved
actly. Among them is the special boundary conditions stud
by BK @9#. They considered a lattice with 2N sites in thex
direction andM sites in they direction. The boundary con
ditions are periodic in thex direction; in they direction, the
05613
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spins are up~11! along the upper border of the resultin
cylinder and have the alternative values along the lower b
der of the resulting cylinder as is shown in Fig. 1. Recen
Janke and Kenna@19# have analyzed the Ising model in tw
dimensions with these boundary conditions. They have
rived exact expressions for the finite-size scaling of the s
cific heat up to theM 23 order. In this paper we obtain a
exact finite-size corrections for the free energy and the s
cific heat. Moreover, in our case, the terms of the asympt
expansion are analytical functions. They are related to K
necker’s double series@22#, which in turn can be expresse
by elliptic u functions@20#.

For the BK boundary conditions, the Ising partition fun
tion given in Ref.@9# can be rewritten as

ZM,2N5~A2em!2MN)
i 51

N

)
j 51

M
F~ i , j !, ~3!

wherem51/2ln sinh 2J and

F~ i , j !54F2 sinh2m1sin2S p~ i 21/2!

2N D1sin2S p j

2~M11! D G .
~4!

Now we try to express the partition functionZM,2N given by
Eq. ~3! to the form of partition function with twisted bound
ary conditionsZa,b(m),

Za,b
2 ~m!5 )

i 50

N21

)
j 50

M21

4Fsin2S p~ i 1a!

N D
1sin2S p~ j 1b!

M D12 sinh2mG , ~5!

for which a general theory about its asymptotic expans
has been given in Ref.@20#. For this purpose we can expres
the double products ) i 50

2N21) j 50
2M11F( i 11,j ) through

) i 51
N ) j 51

M F( i , j ) as

)
i 50

2N21

)
j 50

2M11

F~ i 11,j !5S )
i 51

N

)
j 51

M
F~ i , j !D 4

3 )
i 50

2N21

F~ i 11,0!F~ i 11,M11!.

~6!

Here we use the properties of functionF( i , j )

F~2N112k, j !5F~k, j ! and F~ i ,2M122k!5F~ i ,k!.
~7!

This transformation leads the rectangular latticeM32N un-
der consideration to the lattice 2(M11)32N. In what fol-
lows we will use, for convenience, the definition of the a
pect ratio asj5(M11)/N instead of the conventional on
(j5M/2N).

The left-hand side of Eq.~6! is nothing but the partition
function with twisted boundary conditionsZ1/2,0

2 (m) given by
Eq. ~5! with N52N andM52(M11). With the help of the
identity @23#
2-2
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)
i 50

2N21

4Fsinh2v1sin2S p~ i 11/2!

2N D G54 cosh2~2Nv!

the second product in the right-hand side of Eq.~6! can be
transformed into the form

)
i 50

2N21

F~ i 11,0!F~ i 11,M11!

5@4 cosh$2Nvm~0!%cosh$2Nvm~p/2!%#2, ~8!

where

vm~k!5arcsinh Asin2k12 sh2m ~9!

is a lattice dispersion relation.
Using Eqs.~4!–~6! and ~8!, the partition functionZM,2N

can be expressed as

ZM,2N
2 5

~A2em!4MN

4 cosh@2Nvm~0!#cosh@2Nvm~p/2!#
Z1/2,0~m!.

~10!

For our further purposes we transform the partition funct
Z1/2,0 into the simpler form

Z1/2,0~m!5 )
n50

N21

2 sinhFMvmS p~n11/2!

N D G , ~11!

whereN52N andM52(M11).

III. ASYMPTOTIC EXPANSION OF THE FREE ENERGY

In the preceding section it was shown that the partit
function of theM32N Ising model with BK boundary con
ditions can be expressed in terms of the partition funct
with twisted boundary conditionsZ1/2,0, which has been wel
studied in Ref.@20#. Further we will use it and for simplicity
we will remind some necessary parts from there. For read
convenience, all the technical details of our calculations
definitions of the special functions are summarized in
appendices at the end of this paper. Considering the lo
rithm of the partition function with twisted boundary cond
tions, Eq.~11!, we note that it can be transformed as

lnZ1/2,0~0!5M (
n50

N21

v0S p~n11/2!

N D
1 (

n50

N21

ln~12e22 Mv0„p(n11/2)/N…!. ~12!

The second sum here vanishes in the limitM→` when our
lattice turns into infinitely long cylinder of circumferenceN.
Therefore, the first sum gives the logarithm of the partiti
function with twisted angle 1/2 on that cylinder. I
asymptotic expansion can be found with the help of
Euler-Maclaurin summation formula@24#
05613
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M (
n50

N21

v0S p~n11/2!

N D5
S

pE0

p

v0~x!dx2pjB2
1/2

22 pj (
p51

` S p2j

S D p l2p

~2p!!

B2p12
1/2

2p12
.

~13!

Here S5NM54N(M11), Bp
1/2 are the Bernoulli polyno-

mials Bp
a at a51/2, which are related to the Bernoulli num

bers Bp[Bp
0 as Bp

1/25(212p21)Bp and j5M /N5(M
11)/N. We have also used the symmetry propertyv0(k)
5v0(p2k) of the lattice dispersion relation given by Eq
~9! and its Taylor expansion

v0~k!5kS l1 (
p51

`
l2p

~2p!!
k2pD , ~14!

wherel51, l2522/3, l454, etc.
We may transform the second term in Eq.~12! as

(
n50

N21

ln~12e22 Mv0„p(n11/2)/N…!

5 ln
u4

h
1pj B2

1/222 pj (
p51

` S p2j

S D p L2p

~2p!!

3
ReK2p12

1/2,0 ~ ilj!2B2p12
1/2

2p12
, ~15!

whereh5(u2u3u4/2)1/3 is the Dedekind-h function;u2 , u3 ,
u4 are ellipticu functions andK2p12

1/2,0 ( ilj) are Kronecker’s
double series@20,22# ~see also Appendix A!. Taking into ac-
count the relation between moments and cumulants~Appen-
dix B!, the differential operatorsL2p that have appeared her
can be expressed via coefficientsl2p of the expansion of the
lattice dispersion relation as

L25l2 ,

L45l413 l2
2 ]

]l
,

L65l6115l4l2

]

]l
115l2

3 ]2

]l2
,

A

Lp5(
r 51

p

( S lp1

p1!
D k1

•••S lpr

pr !
D kr p!

k1! •••kr !

]k

]lk
.

Here the summation is over all positive numbers$k1•••kr%
and different positive numbers$p1 , . . . ,pr% such that
p1k11•••1prkr5p andk5k11•••1kr21.

Substituting Eqs.~13! and ~15! into Eq. ~12! we finally
obtain exact asymptotic expansion of the logarithm of
partition function with twisted boundary conditions in term
of Kronecker’s double series
2-3
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lnZ1/2,0~0!5
S

pE0

p

v0~x!dx1 ln
u4

h

22 pj (
p51

` S p2j

S D p L2p

~2p!!

ReK2p12
1/2,0 ~ ilj!

2p12
,

~16!

where*0
pv0(x)dx52 G andG50.915 966 is Catalan’s con

stant.
After reaching this point, one can easily write down t

exact asymptotic expansion of the free energy,F5
2 lnZM,2N , at the critical point. Plugging Eq.~16! back in
Eq. ~10! we finally obtain

F522MNS 1

2
ln21

2 G

p D12NF1

2
ln~11A2!2

2G

p G
2

1

2
ln

u4

2h
1pj (

p51

` S p

2ND 2p L2p

~2p!!

ReK2p12
1/2,0 ~ ilj!

2p12
.

~17!

Note that Kronecker’s functionsKp
1/2,0( ilj) can be ex-

pressed in terms of the ellipticu function only. Thus, Eq.
~17! can be rewritten in the following form:

F52MNf bulk12Nf 11 f 01 (
p51

`
f 2p

~2N!2p
, ~18!

where

f bulk52
1

2
ln22

2G

p
520.929 695 . . . , ~19!

f 15
1

2
ln~11A2!2

2G

p
520.142 435 . . . , ~20!

f 052
1

2
ln

u4

2h
, ~21!

f 252
p3j

360S 7

8
u4

82u2
4u3

4D , ~22!

f 452
p5j

48 384Fp j u3
4u4

4S u3
81

5

4
u3

4u4
42

5

16
u4

8D1~u2
41u3

4!

3S 31

16
u4

81u2
4u3

4D S 114 j
u28

u2
D G , ~23!

f 65
p7j

87 091 200F70p2j2u3
4u4

4S u2
161

u2
12u4

4

2
2

81u2
8u4

8

8

2
295u2

4u4
12

16
2

635u4
16

64 D 1630pju3
4u4

4S u2
122

3 u2
8u4

4

4

2
21u2

4u4
8

8
2

127u4
12

64 D S 114 j
u28

u2
D 1S u2

1612 u2
12u4

4

05613
2
3

4
u2

8u4
82

7

4
u2

4u4
122

127

128
u4

16D S 71115040j
u28

u2

18400j2
u28

2

u2
2

1560j2
u29

u2
D G , ~24!

f 852p12j4
u4

4u3
4

33 634 123 776
~1280u2

24120 224u2
20u4

4

183 664u2
16u4

81210 496u2
12u4

121361 115u2
8u4

16

1323 910u2
4u4

201107 310u4
24!

2p11j3

u4
4u3

4S 114 j
u28

u2
D

186 8562 432
~1280u2

2018832u2
16u4

4

119 056u2
12u4

8133 568u2
8u4

12138 655u2
4u4

16

115 330u4
20!2

p10j2u4
4u3

4

1 177 194 332 160S 3789127 720j
u28

u2

148 720j2
u28

2

u2
2

12240j2
u29

u2
D ~1280u2

1613136u2
12u4

4

13216u2
8u4

815176u2
4u41212555u4

16!

2
p9j~u2

41u3
4!

235 438 866 432S 1479115 156j
u28

u2

147 880j3
u28

2

u2
2

147 880j3
u28

3

u2
3

12520j2
u29

u2

17980j3
u28

u2

u29

u2
1140

u2-

u2
D , ~25!

A.

The free energy per unit length of an infinitely long strip
width L at criticality has the finite-size scaling form@10#

F5 f L1 f * 1
D

L
1•••, ~26!

where f is the bulk free energy per unit area,1
2 f * is the

surface energy,L21 is a scaling field, andD is a universal
constant that depends only on the type of boundary co
tions @11#,

D52
p

12
, periodic boundary conditions,

D5
p

6
, antiperiodic boundary conditions,

D52
p

48
, free boundary conditions,
2-4
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D52
p

48
, fixed11 boundary conditions,

D5
23p

48
, fixed12 boundary conditions,

D5
p

24
, mixed boundary conditions. ~27!

For fixed 11 ~or 12) boundary conditions the spins a
fixed to the same~or opposite! values on two sides of the
strip. The mixed boundary conditions correspond to f
boundary conditions on one side of the strip, and fix
boundary conditions on the other. Therefore, BK and
mixed boundary conditions are the same on one side of
long strip~fixed to 1 for all spins! and they are different on
another side of the long strip~fixed to 1212••• for BK
boundary conditions and free boundary conditions for
mixed boundary conditions!.

Using Kronecker’s functions asymptotic form whenj
→0 andj→` we can obtain from Eq.~17! the free energy
per unit length of an infinitely long strip of finite width. In
the limit j→` ~i.e.,M→`) for fixed 2N from Eq.~17! one
obtains the free energy expansion for infinitely long cylind
of circumference 2N,

lim
M→`

F

M 52Nf bulk2
p

24N

12 (
p51

` S p

2ND 2p11 l2pB2p12
1/2

~2p!! ~2p12!

52NS 2
2 G

p
2

1

2
ln2D2

p

12S 1

2ND2
7 p3

1440S 1

2ND 3

2
31p5

24 192S 1

2ND 5

2
10 033p7

9 676 800S 1

2ND 7

2•••.

~28!

This result coincides with that obtained in@14# with the lead-
ing finite-size correction to free energy2p/12(2N)21. In
the limit j→0 ~i.e. N→`) for fixed M we obtain the ex-
pansion of free energy of infinitely long strip with BK
boundary condition of the widthM,

lim
N→`

F

2N 5Mf bulk1 f 11
p

24~M11!

1 (
p51

` F p

2~M11!G
2p11 l2pB2p12

~2p!! ~2p12!

5MS 2
2 G

p
2

1

2
ln2D1

1

2
ln~11A2!2

2 G

p

1
p

24

1

M 2
p

24

1

M 2
1S p

24
1

p3

2800D

05613
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3
1

M 3
2S p

24
1

p3

960D 1

M 4
1•••. ~29!

Here the leading finite-width correction to free energy
p/24M 21. From Eqs.~26!–~29! one can see that

L52N, f 5 f bulk , f * 50, D52
p

12
, ~30!

L5M, f 5 f bulk , f * 5 f 1 , D5
p

24
. ~31!

Our results are consistent with the conformal field theo
prediction for the mixed boundary condition@see Eq.~27!#
although the mixed boundary condition and the BK boun
ary condition are different on one side of the long strip.

IV. ASYMPTOTIC EXPANSION OF THE INTERNAL
ENERGY AND THE SPECIFIC HEAT

The internal energy per spin and the specific heat per s
can be obtained from the partition functionZM,2N ,

U52
1

2MN
d

dJ
lnZM,2N52

A11e24 m

2MN
d

dm
lnZM,2N ,

~32!

C5
1

2MN
d2

dJ2
lnZM,2N

5
e24m

MN S 11e4 m

2

d2

dm2
lnZM,2N 2

d

dm
lnZM,2ND . ~33!

Let us first consider the internal energy. At the critical po
T5Tc (m50) the internal energy is given by

U52A21A2
d

dm
lnZ1/2,0~0!. ~34!

One can note thatZ1/2,0(m) is an even function with respec
to its argument m, which implies immediately that
@dZ1/2,0(m)/dm#m5050. Thus we find that internal energ
for the finite system is equal to its bulk values without a
finite-size corrections, namely,U52A2.

At the critical point T5Tc (m50) the specific heat is
given by

C5222
4N
M 2

A2

Mtanh@2Nln~11A2!#

1
1

2MN
d2

dm2
lnZ1/2,0~0!. ~35!

The analysis of theZ1/2,09 (0) is a little more involved. Taking
the second derivative of Eq.~11! with respect to mass vari
ablem and then considering the limitm→0, we obtain
2-5
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Z1/2,09 ~0!

Z1/2,0~0!
5M (

n50

N21

v09S p~n11/2!

N D cthFMv0S p~n11/2!

N D G
5M (

n50

N21

v09S p~n11/2!

N D
12 M (

n50

N21

(
m51

`

v09S p~n11/2!

N D
3expH 22mFMv0S p~n11/2!

N D G J , ~36!

whereM52(M11), N52N, andv09(x) is the second de
rivative of vm(x) with respect tom at criticality

v09~x!5
2

sinxA11sin2x
.

Using Taylor’s theorem, the asymptotic expansion of
v09(x) can be written in the following form:

v09~x!5
2

x H 11 (
p51

`
k2p

~2p!!
x2pJ ,

wherek2522/3, k45172/15, etc. The first sum in Eq.~36!
we may transform as

M (
n50

N21

v09S p~n11/2!

N D
5M (

n50

N21

f S p~n11/2!

N D1
4 S

p (
n50

N21
1

n11/2
,

~37!

where we have introduced the functionf (x)5v09(x)22/x
22/(p2x). This function and all its derivatives are inte
grable over the interval (0,p). Thus, for the first term in Eq
~37! we may use again the Euler-Maclaurin summation f
mula, and after a little algebra we obtain

M (
n50

N21

f S p~n11/2!

N D
5

S

pE0

p

f ~x!dx22 pj (
p51

` S p2j

S D p21

3
k2pB2p

1/2

p~2p!!
1

2 S

p (
p51

` B2p
1/2

p

1

N2p
, ~38!

where*0
p f (x)dx52 ln224 lnp. The second sum in Eq.~37!

can be written in terms of the digamma functionc(x),

(
n50

N21
1

n11/2
5c~N11/2!2c~1/2!. ~39!

The asymptotic expansion of the digamma functionc(x) is
given by ~see Appendix D!
05613
e

-

c~N11/2!5 lnN2 (
p51

`

~21!p
Bp

1/2

p

1

Np
. ~40!

Using the property of the Bernoulli polynomialsBp
1/2,

namely,B2p11
1/2 50, Eq. ~39! can be rewritten as

(
n50

N21
1

n11/2
5 lnN2 (

p51

` B2p
1/2

2 p

1

N2p
2c~1/2!. ~41!

Plugging Eqs.~38! and ~41! back in Eq. ~37!, We finally
obtain

M (
n50

N21

v09S p~n11/2!

N D5
4 S

p H lnN1
1

2
ln22 lnp2c~1/2!J

22 pj (
p51

` S p2j

S D p21 k2pB2p
1/2

p~2p!!
.

~42!

Let us now consider the second sum in Eq.~36!. Note that
function v09(x) can be represented as

v09~x!5
2

x
expH (

p51

`
«2p

~2p!!
x2pJ , ~43!

where coefficients«2p and k2p are related to each othe
through relation between moments and cumulants~Appendix
B!. Following the same lines as in Sec. III, the second sum
Eq. ~36! can be written as

2 M (
n50

N21

(
m51

`

v09S p~n11/2!

N DexpF22mMv0S p~n11/2!

N D G
5

4 S

p
$R1/2,0~j!1c~1/2!%1S k2j

]

]j
1l2j2

]2

]j2D
3 ln

u4~j!

h~j!
22 pj (

p52

`
V2p

p~2p!! S p2j

S D p21

ReK2p
1/2,0~ ilj!

12 pj (
p51

` k2pB2p
1/2

p~2p!! S p2j

S D p21

, ~44!

where

R1/2,0~j!522 lnu4~j!1CE12 ln2

andCE is the Euler constant. The differential operatorsV2p
that have appeared here can be expressed via coeffic
v2p5«2p1l2p]/]l as

V25v2 ,

V45v413 v2
2 ,

A.

Substituting Eqs.~42! and~44! into Eq.~36!, we obtain exact
asymptotic expansion ofZ1/2,09 (0),
2-6
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Z1/2,09 ~0!

Z1/2,0~0!
5

4 S

p S lnN1CE1 ln
25/2

p
22 lnu4~j! D

1S k2j
]

]j
1l2j2

]2

]j2D ln
u4~j!

h~j!

22 pj (
p52

`
V2p

p~2p!! S p2j

S D p21

ReK2p
1/2,0~ ilj!.

~45!

Plugging Eq.~45! back in Eq.~35! we finally obtain exact
asymptotic expansion of the specific heat

C5
8

p S 11
1

jN21D ln2N1 (
p50

`
Cp

~2N!p
, ~46!

where

C05
8

p S CE1 ln
25/2

p
2

p

4 D2
4

j
2

16

p
lnu4~j!,

C15
2

j
~C0122A2!,

C25
2

j
C12

p

9 H pju3
4u4

41~u2
41u3

4!S 114 j
u28

u2
D J ,

C35
2

j
C2 ,

C45
2

j
C31

p5j4u4
4u3

4

270 S u2
82

3

2
u4

4u2
42

21

4
u4

8D
1

p4j3u4
4u3

4

54 S u2
42

7

4
u4

4D S 114 j
u28

u2
D

1
4 p3j2

135 S u2
4u3

42
7

8
u4

8D S 43

40
15 j

u28

u2

17 j2
u28

2

u2
2

1j2
u29

u2
D ,

C55
2

j
C4 ,

A.

The 1/M expansion of the specific heat has a form

C5
8

p S 11
1

MD ln M1 (
p50

`
cp

M p
, ~47!

where

c05C02
8

p
ln

j

2
,

05613
c15
j

2
C11

8

p S 12 ln
j

2D ,

c25
j2

4
C22

j

2
C11

4

p
,

c352
j2

4
C21

j

2
C12

4

3p
,

c45
j4

16
C42

j

2
C11

2

3p
,

c552
3j4

16
C41

j2

2
C21

j

2
C12

2

5p
,

A.

Typical values of the constantsc0–c3 are given in Table I, in
which the coefficients are consistent with those obtained
@19#.

Using Kronecker’s functions asymptotic form whenj
→0 andj→` we can obtain from Eqs.~35! and ~45! the
specific heat per unit length of an infinitely long strip
finite width. In the limit j→` ~i.e., M→`) for fixed 2N
the specific heat expansion for infinitely long cylinder
circumference 2N can be written as

C5
8

p
ln 2N1

8

p S CE1 ln
25/2

p
2

p

4 D
2 (

p51

` 4p2p21V2pB2p
1/2

p~2p!!

1

~2N!2p

5
8

p
ln 2N1

8

p S CE1 ln
25/2

p
2

p

4 D2
p

9 S 1

2ND 2

2
301p3

10 800S 1

2ND 4

2
29 419p5

1 905 120S 1

2ND 6

2
2 759 329p7

145 152 000S 1

2ND 8

2•••. ~48!

In the limit j→0 ~i.e., N→`) for fixed M we obtain the
expression for specific heat of infinitely long strip with B
boundary condition of widthM,

C5
8

p

M11

M S ln~M11!1CE1 ln
23/2

p D222
A2

M

2 (
p51

`
2k2pB2p

p~2p!! S p

2 D 2p21 1

M~M11!2p21

5
8

p S 11
1

MD ln M1
8

p S CE1 ln
23/2

p
2

p

4 D
1

8

p S CE1 ln
23/2

p
112

A2p

8 D 1

M 1S 4

p
1

p

18D S 1

MD 2

2S 4

3p
1

p

18D S 1

MD 3

1S 2

3p
1

p

18
1

43p3

21 600D S 1

MD 4
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TABLE I. Values of the coefficientsc0–c3 for various values of the ratioj5(M11)/N. Presented here
are (c022)/8 andci /8(i 51,2,3) for the convenience of comparison with the results of Janke and Kenna@19#,
in which 1/r is corresponding toj in the present paper.

j 1/2 1 2

(c022)/8 -0.349 694 2069 . . . -0.350 879 7332 . . . -0.376 674 2334 . . .
c1/8 0.291 838 9839 . . . 0.290 653 4576 . . . 0.264 858 9574 . . .
c2/8 0.180 950 4387 . . . 0.175 784 3456 . . . 0.125 896 1378 . . .
c3/8 -0.074 847 1433 . . . -0.069 681 0502 . . . -0.019 792 8424 . . .
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2S 2

5p
1

p

18
1

43p3

7200D S 1

MD 5

1•••. ~49!

Note that the specific heat expansion for infinitely long c
inder contains only even powers ofN 21 ~except, of course,
the leading logarithmic term!, while in the specific heat ex
pansion for infinitely long strip with BK boundary conditio
any integer powers ofM 21 can occur.

In Fig. 2 we plot the aspect-ratio (j) dependence of the
finite-size specific heat correction termsC0 ,C1 ,C2 , andC3
for the Ising model with BK boundary condition and those
the torus@15#. We use the logarithmic scales for the horizo
tal axis. For large enoughj(@1), the finite-size properties o
the Ising model with BK boundary condition and those of t
torus become the same because the boundaries along
shorter direction determine the finite-size properties of
system; for both BK boundary condition and the torus, t
boundary condition along they axis is the periodic one.

V. SUMMARY AND DISCUSSION

In this paper, we have used the method of@20# to derive
exact finite-size corrections for the free energyF and the
specific heatC of the critical ferromagnetic Ising model o
the M32N square lattice with Brascamp-Kunz~BK!
boundary conditions@9#. We find that the finite-size correc
tions to the free energy and the specific heat are always
teger powers ofN 21(M 21) except, of course, the leadin
logarithmic term in the specific heat. In the finite-size expa
sion of the free energy given by Eq.~18!, only even power of
N 21 occur, except for the termN. In the finite-size expan-
sion of the specific heat given by Eqs.~46! and ~47!, any
integer powers ofN 21(M 21) can occur.

We have compared our results with those under toro
boundary conditions. When the ratioj/25(M11)/2N is
smaller than 1 the behaviors of finite-size corrections forC
are quite different for BK and toroidal boundary condition
when ln(j/2) is larger than 3, finite-size corrections forC in
two boundary conditions approach the same value. In
limit N→` we obtain the expansion of the free energy f
infinitely long strip with BK boundary conditions. Our re
sults are consistent with the conformal field theory predict
for the mixed boundary conditions by Cardy@11# although
the definitions of boundary conditions in two cases are d
ferent on one side of the long strip. It is of interest to kno
under what conditions different boundary conditions cou
still give the same finite-size corrections.
05613
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FIG. 2. Aspect-ratio (j) dependence of finite-size correctio

terms for the specific heat of the square lattice Ising model w
Brascamp-Kunz boundary conditions~solid lines! and toroidal
boundary conditions~dashed lines!: ~a! C0, ~b! C1, ~c! C2, and~d!
C3.
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The results of this paper show that the method of R
@20# is quite useful for calculating exact finite-size corre
tions for critical systems. It is of interest to apply this meth
to calculate exact finite-size corrections for the Ising mo
and other free models@20# on various lattices with various
boundary conditions so that some general features of s
finite-size corrections could be found.
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APPENDIX A: KRONECKER’S DOUBLE SERIES

Kronecker’s double series can be defined as@22#

Kp
1/2,0~t!52

p!

~22p i !p (
m,nPZ

(m,n)Þ(0,0)

e2p in

~n1tm!p
.

In this form, however, they cannot be directly applied to o
analysis. We need to cast them in a different form. To t
end, let us separate from the double series a subseries
m50,

Kp
1/2,0~t!52

p!

~22p i !p (
nÞ0

e2p in

np

2
p!

~22p i !p (
mÞ0

(
nPZ

e2p in

~n1tm!p
.

Here the first sum gives nothing but Fourier representatio
Bernoulli polynomials

Bp
a52

p!

~22p i !p (
nÞ0

e22p ina

np
. ~A1!

The second sum can be rearranged with the help of the i
tity

p!

~22p i !p (
nPZ

e2p in

~z1n!p
5p(

n50

`

~n11/2!p21e2p iz(n11/2),

which can easily be derived from the following equation
differentiating itp times:

e2p iza

e2p iz21
52 (

n50

`

e2p iz(n1a)5
1

2p i (
n52`

1`
e22p ina

z1n
.

~A2!

The final result of our resummation of the double Kronec
sum is

Kp
1/2,0~t!5Bp

1/22p (
mÞ0

(
n50

`

~n11/2!p21 e2p imt(n11/2).
05613
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Considering the Kronecker sums with pure imaginary asp
ratio, t5 i j, we can further rearrange this expression to
summation only over positivem>1,

B2p
1/22K2p

1/2,0~ i j!54p (
m51

`

(
n50

`

~n11/2!2p21 e22pmj(n11/2).

~A3!

APPENDIX B: RELATION BETWEEN MOMENTS AND
CUMULANTS

MomentsZ2k and cumulantsF2k which enter the expan
sion of exponent

expH (
k51

`
x2k

~2k!!
F2kJ 511 (

k51

`
x2k

~2k!!
Z2k ,

are related to each other as@25#

Z25F2 ,

Z45F413F2
2 ,

Z65F6115F2F4115F2
3 ,

Z85F8128F2F6135F4
21210F2

2F41105F2
4

A

Zk5(
r 51

k

( S Fk1

k1!
D i 1

•••S Fkr

kr !
D i r k!

i 1! ••• i r !
,

where summation is over all positive numbers$ i 1••• i r% and
different positive numbers$k1 , . . . ,kr% such thatk1i 11•••

1kr i r5k.

APPENDIX C: REDUCTION OF KRONECKER’S DOUBLE
SERIES TO u FUNCTIONS

Let us consider a Laurent expansion of the Weierstr
function

`~z!5
1

z2
1 (

(n,m)Þ(0,0)
F 1

~z2n2tm!2
2

1

~n1tm!2G
5

1

z2
1 (

p52

`

ap~t!z2p22.

The coefficientsap(t) of the expansion can all be written i
terms of the ellipticu functions with the help of the recursio
relation @26#

ap5
3

~p23!~2p11!
~a2ap221a3ap231•••1ap22a2!,

where the first terms of the sequence are

a25
p4

15
~u2

4u3
42u2

4u4
41u3

4u4
4!,

a35
p6

189
~u2

41u3
4!~u4

42u2
4!~u3

41u4
4!,
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a45
1

3
a2

2 ,

a55
3

11
~a2a3!,

a65
1

39
~2a2

313a3
2!,

A.

Kronecker functionsK2p
0,0(t) are related directly to the coef

ficientsap(t)

K2p
0,0~t!52

~2p!!

~24p2!p

ap~t!

~2p21!
.

Kronecker functionsK2p
1/2,0(t) can in their turn be related to

the function K2p
0,0(t) by means of simple resummation o

Kronecker’s double series

Kp
1/2,0~t!5212pKp

0,0~t/2!2Kp
0,0~t!.

Thus, Kronecker functionsK2p
1/2,0(t) can all be expressed i

terms of the ellipticu functions only. For practical calcula
tions the following identities are also helpful

2u2
2~2t!5u3

22u4
2 ,

u2
2~t/2!52u2u3 ,

2u3
2~2t!5u3

21u4
2 ,

u3
2~t/2!5u2

21u3
2 ,

2u4
2~2t!52u3u4 ,

u4
2~t/2!5u3

22u2
2 .

From the formulas above we can easily write down the K
necker functions that have appeared in our asymptotic
pansions,

K4
1/2,0~t!5

1

30S 7

8
u4

82u2
4u3

4D ,

K6
1/2,0~t!52

1

84
~u2

41u3
4!S 31

16
u4

81u2
4u3

4D .

Note that whenj→` we have limitsu2→0,u4→1,u3→1.
The casej→0 can be obtained by using Jacobi’s imagina
-
0,

a,

of

05613
-
x-

transformation of theu functions. In this caseu2→1/Aj,
u4→0 andu3→1/Aj and the Kronecker’s function can aga
be reduced to the Bernoulli polynomials.

APPENDIX D: ASYMPTOTIC EXPANSION OF THE
DIGAMMA FUNCTION c„N¿a…

Let us start with the well known expansion of the d
gamma functionc(N) @23#,

c~x!5 ln x2
1

2x
2 (

p51

`
B2p

2p

1

x2p
5 ln x2 (

p51

`

~21!p
Bp

p

1

xp
.

~D1!

Plugging in the above expansionx5N1a and expanding
the resulting factors ln(11a/N),(11a/N)2p in powers ofN21

we obtain

c~N1a!5 ln N2 (
p51

`

~21!p
ap

pNp

2 (
p51

`

(
k50

`

~21!k1pBp

~p1k21!!

k! p!

ak

Np1k

5 ln N2 (
p51

`

~21!p
ap

pNp

2(
l 51

`

(
p51

l

~21! lBp

~ l 21!!

~ l 2p!! p!

a l 2p

Nl

5 ln N2(
l 51

`

(
p50

l

~21! lBp

~ l 21!!

~ l 2p!! p!

a l 2p

Nl
.

~D2!

Using the relation between Bernoulli polynomialsBp
a and

Bernoulli numbersBp

Bl
a5 (

p50

l

Bp

l !

~ l 2p!! p!
a l 2p, ~D3!

we finally obtain Eq.~40!

c~N1a!5 ln N2 (
p51

`

~21!p
Bp

a

p

1

Np
. ~D4!
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